If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=62.5
We move all terms to the left:
X^2+X-(62.5)=0
We add all the numbers together, and all the variables
X^2+X-62.5=0
a = 1; b = 1; c = -62.5;
Δ = b2-4ac
Δ = 12-4·1·(-62.5)
Δ = 251
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{251}}{2*1}=\frac{-1-\sqrt{251}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{251}}{2*1}=\frac{-1+\sqrt{251}}{2} $
| 8c =9 | | u-5/2=1/2 | | -4+x=4x-13 | | 9+4k=21 | | 5x+2=-2+6x | | 4x^2+32x-133=0 | | 2(12)+3y=6 | | 4x^2+32x+133=0 | | 6+3b=30 | | 5(4c-8)=17 | | 4(5-7x)=-92 | | Y/3+y/5=-16 | | -1/x-3=0 | | X^2-100x-200=0 | | 9(2-5n)=-28 | | 12-3x=6x-2 | | (9x-13)2=1 | | 5+7x=6x+5 | | -17=6+7(s+4) | | (6x+4)=(3+4x) | | 4/3x=96 | | 190*x=57 | | 22x=800 | | 4x+6=5x-18 | | -5x+2=-40+2x | | 1.25x+x=3.5 | | -7x-6=-5x+8 | | 3(q+1/2)=4(q+2-21/2 | | R=(4x+20/20) | | 15+75=5x | | 25x=22.25 | | -22-x=56x+9 |